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Factorizations of Normalized

Totally Positive Systems

J. M. Carnicer and E. Mainar

Abstract. The de Casteljau algorithm for evaluation of B6zier curves
can be generalized to curves generated by any normalized totally positive
basis. The construction of this algorithm is based upon a factorization
of the system as a product of bidiagonal stochastic matrices of functions.
These factorizations depend on a selection of a sequence of rectangular
bidiagonal matrices of decreasing dimensions.

§1. Introduction

The Bernstein basis b'(t):= t)-iti can be used for defining a BSzier
curve

y(t) := V (t), t E [0,1].
t=O

By means of the degree raising technique, we can express the B6zier curve in
terms of the Bernstein basis of one higher degree: -y(t) = Zn. 1 Qbn+,l(t),
t E [0, 1]. Indeed, the relations

_____ i++ 1lb(t) = n l lb + b 1 (t), i= 0,... ,n, (1.1)0(t) b t)+ i+1

can be written in matrix form as
(bn,...,bn) -- (bn+l,., bn+1•(1

o ... 0 n+l,(1.2)

where A is an (n + 2) x (n + 1) nonnegative stochastic bidiagonal matrix. Such
a matrix can be written as:

01
0 0 ...... 0 1
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2 J. M. Carnicer and E. Mainar

Equality (1.2) corresponds to the choice

=i + i=1,...,n. (1.4)

Using (1.2), we can write

,y(t) = (bn',...,b)(P0 ,...,pn)T = (b+l,...,b+I)A(Po.... , Pn)T,

which proves that the new control polygon is given by

(Qo,..., Qn+i)T := A(Po,... ,Pn)T. (1.5)

On the other hand, the de Casteljau algorithm for the pointwise evalua-
tion of the curve is based on the following well-known recurrence relations

b'•+(t) = Aj-(t)bV_1(t) + (1 - Ai(t))bn(t), i = 0,...,n + 1, (1.6)

where Ai(t) := t for i = 0,... ,n, A-1 (t) := 0, and An+ 1 (t) := 1. Indeed, we
can write (1.6) as

(bn+1 (t)'., bn+1 n t, b())At,(17
. . . b + 1 (t )) = (b o ( ) . . • t ) ~ ) 1 7

where A(t) denotes the nonnegative stochastic bidiagonal matrix

1 - ;•o(t) Ao(t)

A(t) 1 A. .. .~)A~) (1.8)

1-A(t) = y•ln+(t),

Then, starting with a Bizier curve y(t) =- Q•bo (1.7) gives
-. (,)b= +b)lQo,...,~ Q l)T = (b',... bn) (Po(t),... P(t))T,

where
(po(t),..., Pn(t))T := A(t)(Q 0,... Qn+l)T.(19

Equality (1.9) describes the first step of the de Casteljau algorithm for the
evaluation of y(t).

Bernstein bases are totally positive on [0, 1]. In this paper we shall prove
that similar properties hold for any totally positive basis of functions. Let us
recall that a totally positive matrix is a matrix such that all of its minors are
nonnegative. A totally positive system of functions defined on I is a system
(uo,. .. ,u,,) such that (uj(ti))o<ij<. is totally positive for all to < ... < t, in
I. A normalized totally positive (NTP) basis (u 0 ,... ,u,) is a totally positive
system of linearly independent functions such that _i-o ui = 1.

Given an NTP basis (0~+1,..., Un+l) on an interval I, and a nonnegative
stochastic (n + 2) x (n + 1) matrix A of rank n + 1, we shall consider the system
of functions defined by

(`a ,... ,,n) :=_ (Un--I .n+,, 1.0
0 1 . . . , "n~_) I. ( . 0



Factorizations of NTP Systems 3

Starting from a curve 7 (t) = Zn=o Piu'(t), t C I, clearly (1.10) allows usto exressit a -y~) . n+1 Qi-} + (~lt•

to express it as y(t) Z~ Qz-.,)O 2 ), where the points Qi are defined by
(1.5). In this paper we will derive from (1.10) the existence of nondecreasing
functions A0 ,. . . , An with values in [0, 1] such that

Un~lt)'..,Un+l(t)) = (un(t),... , u(t))A(t), t E 1. (1. 11)

The matrix A(t) is defined from Ai as in (1.8). Starting with a curve Y(t)

Zn=l Qiu•+(t), t E I, we will be able to write it as -y(t) = -•_0 Pi(t)u=(t),
where the points Po(t), ... , P,(t) are again given by (1.9). On the other hand,
we shall check that (1.10) implies that (u ,...., u') is an NTP basis on I. It
will therefore be possible to iterate this process. Doing so, we shall obtain a
de Casteljau type algorithm for the evaluation of -1(t).

Pottmann and Mazure in [5,6,7] developed generalizations (1.11) of the
de Casteljau algorithm for Tchebycheffian curves. Here we show that these
generalizations can be also obtained for any curve generated by an NTP basis.

We observe that for each value of t, the point Pij(t) is a convex combina-
tion of two consecutive points, obtained in the previous step of the algorithm.
Therefore, these algorithms can be seen as corner cutting algorithms for curve
evaluation [4].

§2. Recurrence Relations for NTP Systems

The following proposition allows us to describe the generalization of formulae
(1.6) to any NTP systems related by a matrix (1.3). First we need to show
the following auxiliary result.

Lemma 2.1. Let (u .0 n+1) be an NTP basis of functions defined on
I and Un.., : n+ n'A (2.1)

0 n 0 . n+l)1

where A E IR(n+ 2)x(n+l) is of the form (1.3). Let Ci := {t E I I u0(t) # 0}.
Then
(i) u t)/u]'(t), t E Ci, is a nondecreasing function,

(ii) ai+1un+1 (t)/u7(t) E [0, 1], for all t E Ci.

Proof:
(i) Since A is bidiagonal, we can write

un(t)=(1--ai)un+l(t)+ai+lun+l(t), teI, i=O,...,n. (2.2)

Observe that, since A is nonnegative and (u0+1,... un+) is NTP, then0 ""'n+1)

un'(t) > 0, for all t E Ci. Moreover,

21 (t)I =Z 1 (t)3
U n( 8) U '+n Il(s) -- ) u n+ 1(8) U '+1 s --0 0, t < s, (2 3

because (u•+1 , ~ )+1) is totally positive. Formula (2.3) implies that
un+1/u, is nondecreasing in Ci.
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(ii) Using (2.2), we can write
Oai+lui+1 (t) _ ili+1 (t)<1,tEC.[

0 ý < u(t) (1 _ a,)un+l(t)+ali+(t
ai-ln+l (t)

The following proposition is devoted to showing that formula (1.11) holds
for NTP bases. nl,.Un+') and (un,....,un) be two NTP bases
Proposition 2.2. Let (u ,, an+1 0 b
of functions on I related by (2.1), where A is a matrix (1.3) (rank A = n + 1).
Let Ci := {t E I I 0u'(t) # 0}. Then the functions Ai : I --* -+R, i = 0,...,n,
defined by

) {a+i~inf{un+l(s)/un(s) I s E Ci}, if u!(s) = 0, Vs < t,Ai(t) ajjin =1
ai+l sup {uj+1 (s)/ut'(s) I s E Ci, s < t}, otherwise,

(2.4)
are nondecreasing, and satisfy

0 < • i(t) < 1, Vt E I, i =0,...,n. (2.5)

Furthermore, if we use definition (1.8), then (1.11) holds.

Proof: Since (u ,...., un) are linearly independent, then Ci # 0 for all i.
Therefore, by Lemma 2.1 (ii), we can defineo+11

Ki := a+l m I• ui+(s) s ECi C [0, 1].

If the condition 0' (s) = 0, Vs < t, does not hold, then the set {s C Ci 1 s < t}
is nonempty and by Lemma 2.1 (ii), we can define

i-Ai(t) := a+l supl u (s) sECi,s<t <_1.
un (s)

We have seen that Ah, i = 0,... ,n, are well-defined and that (2.5) holds. In
order to see that Ai(t) are nondecreasing, let us observe first that if {s E Ci I
s < t1 } = 0 and {s E Ci I s < t2} 7 0, then tl must be less than t2 . Therefore,
we only have to show that Aj(t 1) ! Ai(t 2 ) only for all tl < t2 such that there
exists some s < tj with ui(s) : 0. We observe that {s E Ci I s < tl} C {s c
Ci I s < t 2}. Therefore, by Lemma 2.1 (i),

ai+j sup + sECi,)sE tl C i}<ai+lsup I Ui(s) s E Ci,s < t 2}•

We now establish the relation

ai+ju+- (t)=hi(t)un(t), Vt EI, i = 0,... ,n. (2.6)

If ui(t) = 0, then by (2.2), + iU~'1 (t) = 0, and (2.6) trivially holds. Other-
wise, we have t E {s E Ci I s < t}, and by Lemma 2.1 (i),

/•i~t) = O +Xn1 (t)/Un (t),Ai(t) = cei+1Un4li

so (2.6) is confirmed again.
Finally, using (2.6) and (2.2) we can write

firl(t)unl(t) + (l _ -i(t))un(t)= aiun+l(t) +un(t) - i+lEn+ll(t) = un,+l(t)
for alltEIandi=0,...,n. E3
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§3. A Generalization of the de Casteljau Algorithm for NTP Bases

Given an NTP basis (un,... , u,) of a space Un of functions defined on I,
we can obtain a sequence of NTP bases (u0k,..., uk) of (k + 1)-dimensional
subspaces Uk by the recurrence( Uk(t),... (t) + 1l(t),... 1 (

(U0 k+l( ))Ak+l, k =n-l,n-2, ... ,O,7 (3.1)

where Ak+l E R(k+2)x(k+1) is a matrix of type (1.3), rankAk+l = k + 1.
In fact, since Ak+j are nonnegative bidiagonal matrices, it easily fol-

lows, using Theorem 2.3 of [1], that Ak+1 is totally positive and, using the
Cauchy-Binet formula (formula (1.23) of [1]), that the systems (3.1) are totally
positive. Taking into account that (u k+l,..., Uk•+1) is normalized and Ak+l is
stochastic, we derive that the systems (3.1) are also normalized. Furthermore,
formula (3.1) relates two bases if and only if rank Ak+1 = k + 1. Observe that
rankAk+l < k+ 1 if and only if there exist 1 < i < j < k such that aý+' = 1
and -k+ 0.

Let us observe that the subspaces Uk form a chain, that is,

Un :D Un-1 D ... D U1 D U0 = span{l}.

Moreover, since (uJ) is an NTP basis of U° then u°(t) = 1, for all t E I.
By Proposition 2.2, the bases of (3.1) are related by

,uk~ ltt)) = (uk(t),... ,uk (t))A,(t), t E I, (3.2)

where Ak+l(t) is a matrix of type (1.8). We shall denote by A)C+l(t) the
(i + 1,i + 2) entry of Ak+l(t). The recurrences (3.1) and (3.2) give

(uk (t),...uk (t)) =U ('(t),...un(t))A ... A+Ak, t E 1, (3.3)

and
(uk (t),...uk(t)) A, A(t)A2(t)'"..Ak(t), t E 1, (3.4)

for k = 0, . . . , n, with the convention An ... Ak+l equals the identity matrix
when k = n and A,(t) ... Ak(t) equals the scalar constant 1 when k = 0.

Formulae (3.4) can be interpreted as a factorization of the NTP system
(uk, ... , uk) as a product of bidiagonal stochastic matrices of functions.

Let us summarize all the conclusions in the following theorem.

Theorem 3.1. Let (u...... ,ul) be an NTP basis of functions defined on I.
Let Ak E IR(k+l)xk, k = 1,...,n, be matrices (3.1) of maximal rank. Define
NTP systems (Uk,..., uk ), k = 0,..., n- 1, by (3.1) (or equivalently by (3.3)).
Then there exist matrices Ak(t) of type (1.8) whose (i + 1, i + 2) entry Aý(t)
is nondecreasing on I and with values in [0,1], k = 1,... , n, such that (3.2)
and (3.4) hold. In particular,

(u n (t),...u n(t)) = A , (t) ... A .(t), VtE 1. (3.5)
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Moreover, for any control polygon P0 ... Pn, consider the following generaliza-
tion of the de Casteljau algorithm:

for j = 0,1,...,n
jPn(t) := Pj

for i = n- 1,-,1,0

for j = 0,1,.. .i

Pj'(t) := (1 - A'+ (t))pj'+l(t) + A'+ (t)Pj'+l(t)

At each step we have

"ly(t) = Pj(t)u'(t), tEI, i= 0,..., n. (3.6)
j=0

In particular -y(t) = P°(t) for all t C I, that is, this generalized de Casteljau
algorithm reconstructs the curve from its control polygon.

Proof: The existence of the matrices Ak(t) of type (1.8), satisfying (3.1) and
(3.2) follows from Proposition 2.2. From the algorithm we see that

(P o'(t),..., P i'(t))T = Ai+ ,(t)(P o"'(t),. , P M (0))T

and by (3.5) we can write

_Y(t) =(u,(t),... , u(t))(Po,... , p)T =

Ai(t) ... Ak(t)Ak+l (t) ... A.(t)(P0 , pj)T
(Uko(t),...,ukk(t))(Pok,(t),...,Pkk(t))T. [

Example 3.2. When applying Proposition 2.2 to (1.1) or (1.2), the func-
tions that we obtain are Ai(t) = t, i = 0,... ,n. Hence we obtain (1.7), and
the corresponding algorithm described in Theorem 3.1 is just the classical de
Casteljau algorithm for polynomials. Of course, any other choice of a sequence
(Ak), k = 1,... , n, of nonnegative stochastic matrices of maximal rank could
lead to another de Casteljau type algorithm. For instance, if we consider the
Bernstein basis (b01, bR, b2) of degree 2, the matrix

A2: 13 2/3

defines a NTP basis ((1-t)(3-t)/3, t(4-t)/3) on [0, 1]. This system generates
a subspace of quadratic functions, different from the polynomials of degree less
than or equal to 1. Furthermore, the functional matrices obtained by applying
Proposition 2.2

'j 2to
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lead to a corner cutting algorithm different from the classical de Casteljau
algorithm.

In [2], it was shown that, in any space with an NTP basis, there exists
a particular NTP basis called the normalized B-basis which has the optimal
shape preserving properties among all NTP bases of the space. In Theorem
4.3 of [3] it was shown that if (u'+1, in+)' is a normalized B-basis of
an (n + 2)-dimensional space and (un,...,un) is a B-basis of an (n + 1)-
dimensional subspace, then there exists a matrix A (1.3) such that

( n ... 'Un U + ... ' , .n.+l)

Thus, B-bases provide good examples of when Theorem 3.1 can be applied.
In the case of polynomial spline spaces (see [2]), the normalized B-basis is
precisely the B-spline basis.

Let T = {C0 =.....= tk-1 < tk _"' .tn < t.+1 .. tn+k},

ti < ti+k, for all i, be an extended knot sequence and

NZT(t) := (t,+k - ti)[t,.. ,ti+k](. - t)k- , t C [to, tn+1], i = 0, ... ,n,

the associated B-spline basis of the space S-. Let us insert a knot r in T such
that tj < 7 < tj+1 (if r = tj then the multiplicity of tj must be less than k)

and define a new sequence of knots t

ti, 05i5j,
ti= T, i = j+1,

ti-l, j+2<i<n+k+l.

The normalized B-bases of $•- and Sý are related by a matrix (1.3) with
T

0, <_i < j-k +1,
ai: (ti+k-I - -T)(ti+k-1 -- ti), j - k + 2 <_ i <_ j,

1, j+1<i <n.

Applying Proposition 2.2 to both B-spline bases, a relation (1.11) is obtained.
In order to obtain a generalized de Casteljau algorithm, we first remove suc-
cesively all interior knots until we arrive at the Bernstein basis. Then we can
continue with the steps of an evaluation algorithm for polynomials (e.g., the
de Casteljau algorithm). We illustrate this procedure with a simple example:

Example 3.3. Take 1- := (0, 0, 1/2, 1, 1), T := (0, 0, 1, 1). The associated
B-spline bases are related by a matrix (1.3):

O'T(t, N 'TW )= (NY;,j_(t),gN •,t (t),g •.T ) 1 2 1 2 , t E [0, 1].

Using Proposition 2.2, we obtain that these bases are also related by (1.11)
with a matrix (1.8), where

Ao(t) = min(1,t/(1 - t)), Al(t) = max(O, (2t - 1)/t), t E [0,1].
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The evaluation algorithm for -y(t) := PIN,(t) can be described as

follows. First compute

PJ(t) :=(1 - A0(t))P0 + Ao(t)P 1 , Pl(t):= (1 - A1(t))P1 + A1(t)P 2 ,

and then -y(t) = (1 - t)P•(t) + tP•(t). Note that the last step of the algo-
rithm corresponds to the de Casteljau algorithm. Of course, this algorithm is
different from the classical de Boor-Cox algorithm for evaluation of B-splines.
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